Dokumentation beim Bau von Niederspannungs-Schaltanlagen

Dokumentation beim Bau von
Niederspannungs-Schaltanlagen

‚Ursprüngliche Hersteller‘ bieten praxisorientierte Hilfsmittel

Seit dem verbindlichen Inkrafttreten der DIN EN 61439 im November 2014 ist viel detaillierter beschrieben, wie eine Niederspannungs-Schaltgerätekombination (SK) dokumentiert werden muss, damit die Normkonformität lückenlos eingehalten wird. Zudem schreibt die aktuelle Norm verbindlich vor, welche Anforderungen durch Prüfung, Berechnung oder konstruktive Regeln nachgewiesen werden müssen. Der folgende Beitrag zeigt auf, welche wesentlichen Angaben in welcher Form gefordert sind und welche Hilfsmittel des ursprünglichen Herstellers der Elektrotechniker nutzen kann, um seiner Dokumentationspflicht nachzukommen.

 Die DIN EN 61439 schreibt die Dokumentation einer Niederspannungs-Schaltgerätekombination detailliert vor. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Die DIN EN 61439 schreibt die Dokumentation einer Niederspannungs-Schaltgerätekombination detailliert vor. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)


Generell ist jede Schaltgeräte-Kombination (im folgenden SK) mit einem Typenschild zu versehen, das dauerhaft und gut sichtbar im Verteiler anzubringen ist. Die Mindestanforderungen bezüglich Aufschriften werden im Teil 1 der jeweiligen Schaltgerätekombinationsnorm beschrieben. So sind in den Teilen 1 + 2 der DIN EN61439 als Mindestangaben der Name des Herstellers der SK, das Herstellungsdatum, die Typenbezeichnung beziehungsweise eine Referenznummer sowie die angewandte Norm gefordert. In diesem Zusammenhang wichtig: Die DIN EN61439 versteht unter ‚Hersteller‘ den Elektrofachbetrieb oder Schaltanlagenbauer, der die SK aufbaut, ggfs. verschient und anschlussfertig verdrahtet. Die Unternehmen wie beispielsweise Hager, welche die einzelnen Bauteile einer SK produzieren und systematisch prüfen, werden als ‚ursprünglicher Hersteller‘ bezeichnet. Über die oben genannten Mindestangaben hinaus ist es aus praktischen Erwägungen jedoch sinnvoll, dem Typenschild weitere Angaben hinzuzufügen, wie das Beispiel in Bild 2 zeigt. Der an dieser Stelle ebenfalls angegebene, verpflichtende Nachweis der CE-Konformität (Konformitätserklärung) und die verpflichtende Kennzeichnung auf dem Produkt ergeben sich aus dem EU-Recht. Denn mit dem Bau einer Schaltgerätekombination stellt der Hersteller der Schaltgerätekombination EU-rechtlich ein neues Produkt her, das er durch den Verkauf in Verkehr bringt. Alle in der EU in Verkehr gebrachten Produkte müssen geprüft sein und den einschlägigen Normen entsprechen (CE-Konformität). Dies erklärt der Hersteller der Schaltgerätekombination mit dem Aufbringen der CE-Kennzeichnung. Das CE-Kennzeichen darf nur aufgebracht werden, wenn die Installationsanweisungen des ursprünglichen Herstellers (z.B. Hager) befolgt und die in der CE-Konformitätserklärung aufgeführten EU-Richtlinien eingehalten wurden.
 Aus praktischen Erwägungen ist es sinnvoll, auf dem Typenschild zusätzlich zu den von der Norm gefordertren Mindestangaben weitere Angaben aufzuführen. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Aus praktischen Erwägungen ist es sinnvoll, auf dem Typenschild zusätzlich zu den von der Norm gefordertren Mindestangaben weitere Angaben aufzuführen. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Stromlauf- und Aufbaupläne inklusive technischer Daten

Während sich die Angaben des Typenschilds noch relativ einfach erstellen lassen, sind die weitergehenden Dokumentationspflichten zum Teil mit einem nicht unerheblichen Aufwand verbunden. Insbesondere ist eine Zusammenfassung der normativ geforderten technischen Daten mit Ausführung und Aussagen zu den Umgebungsbedingungen der Schaltgerätekombination gefordert. Lässt sich hieraus keine Verschaltung ableiten, müssen Unterlagen wie z. B. Schaltungspläne oder Klemmenpläne der Dokumentation beigefügt werden. Eine Darstellung des Schrankaufbaues inklusive der Platzierung der eingebauten Geräte ist zu empfehlen. Des Weiteren sollte der Dokumentation eine Stückliste, ein Betriebsmittelblatt und eine Bauteileliste beigefügt werden. Diese umfassen in tabellarischer Form alle in der Schaltgerätekombination verwendeten Betriebsmittel mit Beschreibung, Artikelnummer, Hersteller und Angabe der verwendeten Menge. Der Stromlaufplan muss folgende Angaben enthalten:

  • • das Referenzkennzeichen (früher Betriebsmittelkennzeichen) zur eindeutigen Kennzeichnung des Betriebsmittels mittels einer Buchstaben-/Zahlenkombination;
  • • die Zielbezeichnung der angeschlossenen Stromkreise und Betriebsmittel als eindeutige Klartextkennbeschreibung der angeschlossenen Betriebsmittel oder Stromkreise und
  • • den Bemessungsstrom Inc eines Stromkreises innerhalb der SK.

Fehlen seitens des Kunden Projektierungsvorgaben, ist die Nutzung der Werte aus Tabelle 101 aus den Betriebsmittelnormen DIN EN61439 Teil 2 oder 3 möglich, die einen Belastungsfaktor in Abhängigkeit der Anzahl der Stromkreise des Verteilers oder einer Gruppe der Abgangsstromkreise bestimmt. Der Bemessungsstrom eines Stromkreises ist der Wert des Stroms, der von diesem Stromkreis unter üblichen Betriebsbedingungen getragen werden kann, wenn er allein betrieben wird. Beispielsweise ist der Inc nach DIN EN61439-1/-5.3.2 bei Erbringung des Bauartnachweises ‚Nachweis der Erwärmung‘ durch eine der Berechnungsmethoden (10.10.4), maximal der um den Faktor 0,8 reduzierte thermische Nennstrom eines Betriebsmittels oder eines Stromkreises. Abgangsstromkreise werden meist mit wesentlich weniger Strom dauerhaft und gleichzeitig belastet. Diese Reduktion vermindert automatisch die auftretende Verlustleistung der Betriebsmittel in der SK und ist bei der Berechnung der auftretenden Verlustleistung zu berücksichtigen.

 Fallbeispiel: Genaue Abgangsleistungen liegen nicht vor. Vom Hersteller der Schaltgerätekombination angegebener Wert des Stroms, der ohne Überschreiten der festgelegten Grenzübertemperaturen von dem einzelnen Stromkreis unter festgelegten Bedingungen getragen werden kann. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Fallbeispiel: Genaue Abgangsleistungen liegen nicht vor. Vom Hersteller der Schaltgerätekombination angegebener Wert des Stroms, der ohne Überschreiten der festgelegten Grenzübertemperaturen von dem einzelnen Stromkreis unter festgelegten Bedingungen getragen werden kann. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Rechnerischer oder tabellarischer Erwärmungsnachweis

Neben dem Bauartnachweis durch Prüfung, der meist durch den ursprünglichen Hersteller eines Systems für Hochstrom-Anwendungen erbracht wird, ist der Bauartnachweis durch Berechnung wohl der häufigste gewählte Weg. Dabei ist ein Erwärmungsnachweis zu erbringen, der die von den eingebauten Geräten abgegebene Verlustleistung berücksichtigt sowie die vom Schrankgehäuse abführbare Verlustleistung in Abhängigkeit der maximalen Betriebstemperatur der Einbaugeräte und der Umgebungstemperatur der SK (z. B. max. 40°C bei FI-Schutzschaltern). Mit dem Erwärmungsnachweis ist rechnerisch zu belegen, dass die entstehende Wärme über das Schrankgehäuse oder ggf. durch zusätzliche Lüftungsmaßnahmen (Schaltschranklüfter, Lüftungsflansch, etc.) nach außen abgeführt werden kann. Bei Anlagen mit einem Bemessungsstrom bis 630A darf der Nachweis der Erwärmung durch eine tabellarische Gegenüberstellung der eingebauten und der abstrahlbaren Verlustleistung erfolgen. Bei einem Bemessungsstrom über 630A ist der Nachweis rechnerisch über die abstrahlfähigen Außenflächen des Gehäuses zu erbringen. Diese Methode darf natürlich auch unter 630A angewendet werden. Am einfachsten ist der Erwärmungsnachweis mit einer Software wie zum Beispiel mit hagercad von Hager zu erbringen. Der sich hieraus ergebende Bemessungsbelastungsfaktor ist in den technischen Unterlagen anzugeben (s.o.)

 Das Beispiel gibt einen Überblick, welche Angaben in einer Schaltanlagen-Dokumentation gefordert werden und welche Begrifflichkeiten dabei zu verwenden sind. Es ist von Vorteil diese Projektdaten in einem Deckblatt vor den Aufbau- und Schaltungsplänen zusammenzufassen. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Das Beispiel gibt einen Überblick, welche Angaben in einer Schaltanlagen-Dokumentation gefordert werden und welche Begrifflichkeiten dabei zu verwenden sind. Es ist von Vorteil diese Projektdaten in einem Deckblatt vor den Aufbau- und Schaltungsplänen zusammenzufassen. (Bild: Hager Vertriebsgesellschaft mbH & Co. KG)

Stücknachweis, Stückprüfprotokoll und Bauartnachweis

Der Stücknachweis muss an jeder SK durchgeführt werden und das Protokoll mit den Ergebnissen aus allen relevanten Prüfungen und Messungen ist der Schaltanlagendokumentation beizufügen. Das ebenfalls geforderte Stückprüfprotokoll dient unter anderem dem Bauartnachweis entsprechend den zuständigen Normenteilen DIN EN61439 Teil 1 und 2 für sogenannte PSC-SK, (PSC = Power switchgear and controlgear). Diese befinden sich zumeist in abgeschlossenen elektrischen Betriebsstätten und deren Türen lassen sind nur mittels Werkzeug öffnen. Schaltgerätekombinationen nach DIN EN61439 Teil 1 und 3 für sogenannte DBO-SK, (DBO = Distribution boards intended to be operated by ordinary persons) sind für eine Bedienung durch Laien vorgesehen. Nach welcher Norm die SK gebaut und geprüft ist muss in der Dokumentation oder wie eingangs bereits erwähnt auf dem Typenschild angegeben werden. Bezüglich der Isolationseigenschaften sind die geänderten Anforderungen (Abschnitt 10.9.2.1 betriebsfrequente Spannungsfestigkeit) hinsichtlich der Höhe der Prüfspannung in Abhängigkeit zur Bemessungsisolationsspannung (Leiter gegen Leiter) zu beachten. Die Prüfspannung beträgt z. B. bei AC 400 bis 1.890V. Hierzu sind ggf. spezielle Hochspannungsprüfgeräte erforderlich, die eine Zulassung für Prüfungen nach DIN EN61439 besitzen und zudem die normativ erforderliche Messspannung liefern können. Bei Schaltgerätekombinationen mit einer Kurzschlussschutzeinrichtung in der Einspeisung sowie einem Bemessungsstrom InA bis 250A lässt die Norm unter Abschnitt 11.9 einen Nachweis des Isolationswiderstandes auch mit einem Isolationsmessgerät mit 500V DC zu. Für eine transparente Dokumentation empfiehlt Hager den Eintrag des verwendeten Messgerätetyps samt Herstellerangabe mit dem die Isolationsprüfungen erfolgt sind.

Fallweise erforderlich: der Nachweis der Kurzschlussfestigkeit

Nach DIN EN61439 Teil 1 Abs.10.11.3, 4 oder 5 ist der Nachweis der Kurzschlussfestigkeit durchzuführen. Gemäß DIN EN61439 Abs.10.11 entfällt der Nachweis der Kurzschlussfestigkeit jedoch für folgende Schaltgerätekombination bzw. deren Stromkreise:

Schaltgerätekombinationen mit einer Bemessungskurzzeitstromfestigkeit (Icw) oder einem Bemessungskurzschlussstrom (Icc) von höchstens 10kA Effektivwert. Schaltgerätekombinationen, die durch strombegrenzende Einrichtungen geschützt sind, die den höchstzulässigen Kurzschlussstrom an den Anschlüssen der Einspeisung (Icp) auf maximal 17kA begrenzen.

Zusätzliche Dokumente und Unterlagen

Sofern erklärungsbedürftige Betriebsmittel zum Einsatz kommen, sind deren Bedienungsanleitungen oder Handbücher ebenfalls der Schaltanlagendokumentation beizufügen. Weiterhin sind Handhabungs-, Aufstellungs-, Betriebs- und Wartungsanweisungen der Anlage soweit erforderlich beizulegen. Hierdurch soll der ordnungsgemäße Betrieb sichergestellt und dem Nutzer (Betreiber) der Schaltanlage eine einfache und sichere Bedienung ermöglicht werden.

Unterstützung durch den ursprünglichen Hersteller

Der Beitrag zeigt, dass die aktuelle DIN EN61439 dem Hersteller einer Niederspannungsschaltgeräte-Kombination umfangreiche Dokumentationen abverlangt. Dabei sind zudem die definitorischen Festlegungen der Norm zu berücksichtigen. Um den Elektrohandwerker dabei zu unterstützen und um ihm maximale Sicherheit zu geben, seinen Dokumentationspflichten im Sinne der Norm nachzukommen, bieten führende ‚Ursprungs-Hersteller‘ praxisgerechte Hilfsmittel an. So hat Hager den Planungsleitfaden ‚Schaltanlagenbau‘ entwickelt. Dieser ist als praktisch nutzbares Arbeitsmittel konzipiert, das den Ablauf von Planung, Montage und Dokumentation einer Niederspannungs-Schaltgerätekombination in der Reihenfolge der notwendigen Arbeitsschritte auflistet und die entsprechenden Abschnitte der Normenreihe DIN EN 61439 benennt. Als nützlich erweisen sich auch die Planungssoftware hagercad und elcom.Net dieses Herstellers zum Zeichnen von Stromlaufplänen inklusive Erwärmungs- und Kurzschlussnachweisen. Ebenfalls hilfreich sind ausfüllbare pdf-Dokumente für Stückprüfprotokoll, Bauartnachweis und CE-Konformitätserklärung, die allesamt als kostenlose Downloads auf der Website dieses Herstellers zur Verfügung stehen – und last but not least bietet sich schließlich auch noch die Lieferung von anschlussfertig verdrahteten Schaltanlagen inklusive der normativ korrekten Schaltanlagendokumentation als einfachste Lösung an.

Das könnte Sie auch Interessieren

Bild: Wago GmbH & Co. KG
Bild: Wago GmbH & Co. KG
Schwer biegsame Leiter komfortabel anschließen

Schwer biegsame Leiter komfortabel anschließen

Sowohl in der Gebäudetechnik als auch in industriellen Anwendungen stellt die Einspeisung von elektrischer Energie Installateure und Schaltschrankbauer vor Herausforderungen. Schwer biegsame Leiter mit großen Leiterquerschnitten müssen zuverlässig und dauerhaft kontaktiert werden, um die Schaltschrankkomponenten mit Energie zu versorgen. Noch schwieriger wird es, wenn der Raum für den Anschluss der Einspeiseleiter im und um den Schaltschrank begrenzt ist. Mit Wago-Reihenklemmen kann eine komfortable Verdrahtung der Einspeisung gelingen – auch unter erschwerten Bedingungen.

Bild: Celsa Messgeräte GmbH
Bild: Celsa Messgeräte GmbH
Offenbetrieb vermeiden

Offenbetrieb vermeiden

Stromwandler müssen beim Austausch von Messgeräten oder Stromzählern im Betrieb kurzgeschlossen werden. Dazu werden oft im Messkreis bereits Wandlerklemmen vorgesehen. Die Praxis zeigt, dass weniger das Kurzschließen ein Problem darstellt, sondern das Entfernen der Kurzschlussbrücke nach erfolgtem Messgerätetausch vergessen wird. Stromwandler mit integrierter Kurzschlussbrücke können hier Abhilfe schaffen und die Wandlerklemmen in vielen Anwendungsfällen überflüssig werden lassen.

Bild: Stoll Gruppe GmbH
Bild: Stoll Gruppe GmbH
Vielfältig 
einsetzbar

Vielfältig einsetzbar

Als individueller Lösungsanbieter plant, realisiert und betreut die Firma Stoll Energiesysteme aus dem Allgäu elektrische Energieversorgungen. Lösungen werden für Hochspannungsanlagen bis 110kV, sowie im Bereich der Hochstrom Niederspannungsanlagentechnik bis 7.300A realisiert. Zu den Kunden zählen unter anderem namhafte Industrieunternehmen, Rechenzentren und Kunden aus den erneuerbaren Energien weltweit. Im Bereich Schaltanlagenbau ist das Unternehmen nun eine Zusammenarbeit mit der Firma Sedotec eingegangen, um die Energiewende weiter voranzutreiben.

Bild: Bopla Gehäuse Systeme GmbH
Bild: Bopla Gehäuse Systeme GmbH
Energieketten zum 
Sprechen bringen

Energieketten zum Sprechen bringen

Alles aus einer Hand – mit diesem Wunsch machte sich Tsubaki Kabelschlepp auf die Suche nach einem Anbieter, der mehr als nur das Gehäuse für sein Condition Monitoring System zur Zustandsüberwachung von Energieketten liefern konnte. Mit Bopla Gehäusesysteme wurde ein Partner gefunden, der nicht nur das Gehäuse inklusive Display, Folientastatur und mechanischer Bearbeitung anbieten konnte, sondern auch die Elektronik- und Produktentwicklung sowie die komplette Fertigung inklusive Funktionsprüfung und verkaufsfertiger Verpackung.

Bild: Fraunhofer Institut für Verkehrs- und Infrastruktursystem IVI
Bild: Fraunhofer Institut für Verkehrs- und Infrastruktursystem IVI
Wenn der Standard nicht passt

Wenn der Standard nicht passt

Spezielle Anforderungen erfordern individuelle Lösungen: Für das Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI lieferte die Firma Lm-therm Elektrotechnik eine spezielle Heizlösung, um installierte Kontaktsysteme auch bei Schnee und Frost freizuhalten. Die Lage der Kontaktsysteme verlangte zudem nach einer flexiblen Montagelösung. Die Experten von Lm-therm fanden die richtige Lösung.

Bild: Rittal GmbH & Co. KG
Bild: Rittal GmbH & Co. KG
Hohe Anforderungen 
an den Korrosionsschutz

Hohe Anforderungen an den Korrosionsschutz

Offshore-Windturbinen sind auf hoher See extremen Bedingungen ausgesetzt. Die Anlagen müssen 25 Jahre und mehr zuverlässig den Elementen trotzen. Kein triviales Unterfangen für die eingebaute Technik – und für Systemlieferanten wie Rittal. Das Unternehmen liefert für die derzeit größten und leistungsstärksten Windturbinen die passende Gehäusetechnik – und für viele andere Anwendungen im Bereich Erneuerbare Energien.