Grundlagen zur Kühlung elektronischer Systeme

Grundlagen zur Kühlung
elektronischer Systeme

Moderne Hochleistungselektronik braucht Kühlung. Die Fertigung von dafür geeigneten Druckgusskühlkörpern lohnt sich aufgrund der hohen Werkzeugkosten erst bei hohen Stückzahlen. Gefragt sind Lösungen, die ebenso leistungsfähig sind und gleichzeitig bereits in kleinen Stückzahlen wirtschaftlich gefertigt werden können. Modular aufgebaute lüftergestützte Hochleistungskühlkörper ermöglichen die Realisierung individueller Lösungen, ohne hohe Werkzeugkosten aufbringen zu müssen.
Landläufig wird angenommen, dass Kühlkörper der Abfuhr der durch Verlustleistung in einem elektronischen Bauelement erzeugten Wärme dienen. Tatsächlich jedoch ist ihre Aufgabe die Vergrößerung der Halbleiteroberfläche und damit die Verteilung der Bauteiltemperatur auf eine wesentlich größere Oberfläche. Dadurch sinkt die Temperatur des Halbleiters und seine Lebensdauererwartung steigt. Wird nicht gekühlt, altert und versagt das Bauteil nach kürzester Zeit.

Theoretische Grundlagen der Wärmeleitung

Die in Wärme umgesetzte Verlustleistung eines elektronischen Bauelements errechnet sich aus dem materialabhängigen Wärmeleitkoeffizienten , der Bauteilgeometrie (Grundfläche A und Länge ) und der Temperaturdifferenz T über die Länge bzw. zwischen dem Kühlkörper und der ihn umgebenden Luft nach der Formel:

P = · A/ · T

Durch die Materialabhängigkeit des Wärmeleitkoeffizienten unterscheiden sich die verschiedenen Stoffe hinsichtlich ihrer Wärmeleitfähigkeit. So leitet Kupfer mit einem -Wert von 394W/(m · °C) die Wärme etwa doppelt so schnell wie Aluminium, das lediglich über einen Wärmeleitkoeffizienten von 222W/(m · °C) verfügt. Und Wasser ( = 0,60W/(m · °C)) leitet Wärme bei gleicher Strömungsgeschwindigkeit gut 20 Mal schneller als Luft ( = 0,026W/(m · °C)). Daraus ergibt sich logisch die Eignung der Materialien als Kühlkörper. Luft ist relativ ineffizient. Ein wassergekühltes Kupferelement ist dagegen eine extrem effiziente Kühllösung. Die entscheidende Kenngröße eines Kühlelements und ein Maß für die Dimensionierung und Auswahl eines geeigneten Kühlkörpers ist sein Wärmewiderstand Rth. Er gibt an, wie viel Grad Temperaturdifferenz in Grad Celsius erforderlich sind, um die Wärmeleistung von einem Watt zu übertragen und errechnet sich aus der oben genannten Formel. Demnach ist

Rth = /· bzw. Rth = T/P

Je niedriger der Wärmewiderstand, desto höher der Wärmefluss und desto besser die kühlende Wirkung. Ein idealer Kühlkörper besäße einen Wärmewiderstand von Rth=0. Damit wäre die Temperaturdifferenz T zwischen dem Kühlelement und der ihn umgebenen Luft ebenfalls gleich Null und die Ankopplung ideal. Doch Metalle wie Kupfer oder Aluminium und Gase bzw. Luft verhalten sich bei Erwärmung völlig unterschiedlich. Wird ein metallischer Festkörper erhitzt, beginnen seine Atome um ihre feste Ruhelage im Kristallgitter zu schwingen. Diese Schwingungen werden bei extremer Hitze so stark, dass die Atome ihre Gitterplätze verlassen. Das Metall schmilzt. In Luft bzw. Gasen erzeugt Wärme dagegen eine geradlinige Bewegung der Luftmoleküle. In Bewegung gesetzt, stoßen die einzelnen Moleküle zusammen und geben ihren Bewegungsimpuls weiter. Auf diese Weise steigt mit zunehmender Temperatur des Gases die (mittlere) Geschwindigkeit der Gasmoleküle. Da überdies Festkörper eine wesentlich höhere Dichte, also Atome pro Volumeneinheit, aufweisen als ein Gas, kann die Steigerung der Atomschwingung bei Wärmezufuhr sehr schnell an die Nachbaratome weitergegeben werden. Bei Gasen müssen die Moleküle wesentlich größere Distanzen zurücklegen, um ein benachbartes Molekül zu treffen und ihm seine höhere Geschwindigkeit durch Stoß zu übertragen. Demzufolge leiten Festkörper Wärme besser als Gase. Damit lassen sich die wesentlich höheren -Werte von Aluminium und Kupfer gegenüber Luft (und Wasser) erklären – und auch die Notwendigkeit zur aktiven Kühlung.

Kühlungsarten

Bei Kühlkörpern kann Wärme nur in unmittelbarer Nähe der Grenze zwischen Feststoff und Umgebungsluft abgegeben werden. Diese Sperrschicht beträgt weniger als eintausendstel Millimeter (1/1000mm). Durch das Wegführen der Wärme von der Quelle sinkt die Sperrschichttemperatur. Bei der passiven Kühlung geschieht dies durch natürliche Konvektion: Die erwärmte Luft steigt unmittelbar an der Grenze ‚Festkörper/Gas‘ auf und wird durch die nachfolgende, kühlere Luft ersetzt. Diese Art der Kühlung wäre ideal, weil es die Anzahl der Bauteile in einem elektrischen Gerät und damit den Wartungsaufwand reduziert. Leider reicht dieser Kühleffekt in vielen Applikationen jedoch nicht aus. Um die Temperatur deutlicher zu senken, muss die erwärmte Luft aktiv vom Festkörper weg bewegt und gegen kühlere Luft ausgetauscht werden. Dies geschieht in der Praxis durch auf den Kühlkörper montierte Lüfter. Für viele Anwendungen mit Hochleistungselektronik reicht jedoch selbst diese Kühlungsart nicht aus. Dann sind Lösungen auf der Basis von Flüssigkeitskühlkörpern gefragt, die die entstehende Wärme mit Hilfe von Flüssigkeit ‚wegschwemmen‘.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: RK Antriebs- und Handhabungs-Technik GmbH
Bild: RK Antriebs- und Handhabungs-Technik GmbH
Mitarbeitergesundheit 
und Qualität gesichert

Mitarbeitergesundheit und Qualität gesichert

In der Automobilindustrie gilt es für Zulieferer, im Rahmen einer Nullfehlerstrategie hundertprozentige Qualität zu gewährleisten – das erstreckt sich auch auf die kleinste Fahrwerkskomponente. Alles muss richtig montiert sein, sonst ergeben sich später im Gesamtsystem Probleme. Werkstatt Bremen, deren Mitarbeiter Drehstäbe vormontieren und Just-in-Sequence an das Montageband des Autobauers liefern, nimmt diese Verpflichtung sehr ernst: Spezielle Handarbeitsplätze, die gemäß dem japanischen Poka Yoke-System aufgebaut sind, vermeiden Fehler – und erlauben gleichzeitig eine gute Ergonomie für den Bediener.

Bild: Arburg GmbH + Co KG
Bild: Arburg GmbH + Co KG
Dauerläufer mit 
Flüssigkeitskühlung

Dauerläufer mit Flüssigkeitskühlung

Wenig Platzbedarf im Schaltschrank war gefordert, ein Kühlwasseranschluss hingegen von Anfang an vorhanden. Da lag es nahe, die Servoantriebe und die Umrichter für die Spritzgießmaschinen von Arburg als flüssigkeitsgekühlte Versionen einzusetzen. Durch die eingesetzte Antriebstechnik der Unternehmensschwester AMKmotion profitiert der Maschinenbauer von hoher Leistung, kompakten Abmessungen und langlebiger Elektronik.

Bild: Wöhner GmbH & Co. KG
Bild: Wöhner GmbH & Co. KG
Neuheiten, 
Erweiterungen, Upgrades

Neuheiten, Erweiterungen, Upgrades

Auch in diesem Frühjahr wartet Wöhner, Spezialist für Energieverteilung, Steuerungstechnik und erneuerbare Energien, wieder mit einer Reihe neuer Lösungen auf. Dazu gehört unter anderem die Erweiterung der CrossBoard- und der 185Power-Systemwelten, ein neuer NH00-Sicherungslasttrennschalter oder Feature-Upgrades für bestehende Produkte per Software.

Bild: Sieb & Meyer AG
Bild: Sieb & Meyer AG
Mehr Energieeffizienz 
und weniger CO2-Emissionen

Mehr Energieeffizienz und weniger CO2-Emissionen

Bei seiner Frequenzumrichter-Familie SD4x hat Sieb & Meyer die Prozessorleistung erhöht und die Regelfunktionen erweitert. So lässt sich der Wirkungsgrad in der Anwendung steigern und der Energieverbrauch sowie die CO2-Emissionen reduzieren. Außerdem schaffen die Antriebs- und Steuerungslösungen die Voraussetzung für bestimmte klimafreundliche Applikationen, die wiederum die Energiewende befördern.

Bild: Wago GmbH & Co. KG
Bild: Wago GmbH & Co. KG
Schwer biegsame Leiter komfortabel anschließen

Schwer biegsame Leiter komfortabel anschließen

Sowohl in der Gebäudetechnik als auch in industriellen Anwendungen stellt die Einspeisung von elektrischer Energie Installateure und Schaltschrankbauer vor Herausforderungen. Schwer biegsame Leiter mit großen Leiterquerschnitten müssen zuverlässig und dauerhaft kontaktiert werden, um die Schaltschrankkomponenten mit Energie zu versorgen. Noch schwieriger wird es, wenn der Raum für den Anschluss der Einspeiseleiter im und um den Schaltschrank begrenzt ist. Mit Wago-Reihenklemmen kann eine komfortable Verdrahtung der Einspeisung gelingen – auch unter erschwerten Bedingungen.

Bild: Celsa Messgeräte GmbH
Bild: Celsa Messgeräte GmbH
Offenbetrieb vermeiden

Offenbetrieb vermeiden

Stromwandler müssen beim Austausch von Messgeräten oder Stromzählern im Betrieb kurzgeschlossen werden. Dazu werden oft im Messkreis bereits Wandlerklemmen vorgesehen. Die Praxis zeigt, dass weniger das Kurzschließen ein Problem darstellt, sondern das Entfernen der Kurzschlussbrücke nach erfolgtem Messgerätetausch vergessen wird. Stromwandler mit integrierter Kurzschlussbrücke können hier Abhilfe schaffen und die Wandlerklemmen in vielen Anwendungsfällen überflüssig werden lassen.